Also known as grease seals, rotary shaft seals, or fluid seals, oil seals play a pivotal role in mechanical equipment. They are often overlooked because they are a small part of the machine, but when these oil seals fail, the consequences can be huge, like seal leakages that are costly to fix.
If you want to learn more, please visit our website.
From assembly machines to car engines, oil seals prevent any harmful damage from occurring, which is why you must choose the right oil seal with the highest quality. There are many kinds of oil seals, all of which have several uses.
This article will guide you through the most common factors you should look for when buying oil seals to help you choose the right one for the machinery youre working on.
Improper installation and poor-quality oil seals are some of the reasons that pieces of machinery get damaged. When choosing an oil seal, consider the following factors.
The temperature range of the seal elastomer should match the temperature range of where youll install the seal. For example, high-temperature and high-pressure environments need more durable rubber, like Viton. If the oil seal is exposed to extreme temperatures outside of the elastomers range, the sealing lip may harden, break, and crack.
The oil seals material matters, as it can determine how well it performs depending on its use. Sealing elements can come in leather, silicone, synthetic rubber, Viton, nitrile, and polyacrylate. Nitrile is good for general purposes, as its flexible and resistant against oils, hot water, and gasoline. However, it doesnt do well in extremely high temperatures. Meanwhile, silicone oil seals lessen wear and tear by absorbing lubricants. They have a wide temperature range and high thermal resistance, too.
Understanding the compression requirements of your components is important. Most ordinary oil seals are designed for very low-pressure applications (about 8 psi or less). If the intended application has high pressure, you should consider choosing an oil seal ideal for high pressure or changing to a pressure-free structure.
The oil seal shouldnt suffer from spiraling or abrasions. As such, you should consider the maximum allowable shaft speed, runout, type of oil seal material, type of fluid being sealed, and housing bore and shaft concentricity before buying an oil seal.
Close shaft and bore tolerances should be present if you want the best seal performance. It would be best to consider the shafts vibration, eccentricity, and end play.
You must align bore and shaft centers because misalignment can shorten the oil seals life cycle due to the excessive wear concentrated on only one side of the sealing lip.
It would be best if you kept runout to a minimum. When the center of rotation moves, its usually caused by a shaft whip or bearing wobble. When you add misalignment, then youll face a greater problem. Contrary to common practice, installing flexible couplings wont correct misalignment, which is why you need the right oil seal to prevent all these issues from arising.
The quality of the oil seal affects its service life. The higher the quality, the longer the lifespan, reducing wear and tear and increasing your ROI through lower maintenance costs. While wear and tear issues are inevitable, you should mitigate them by using materials that last long. Here, the first step to ensuring quality oil seals is purchasing from a reputable oil seal supplier.
When shafts have a Rockwell (RC) hardness of 30 or more, you can expect the oil seal to have a longer seal life. For shafts exposed to more abrasive contamination, your oil seal should handle RC 60.
You can tell that you have effective sealing if the shaft surface finish is in excellent condition. Sealing performance is greatly influenced by the spiral lead and the direction of the finish tool marks.
Youll get the best sealing results when the shafts are ground or polished with concentric (no spiral lead) finish marks. If the shaft cant help but have spiral finish leads, they should lead toward the fluid when the shaft rotates.
Oil or lubricants play a significant role in improving the oil seals performance. You should choose a lubricant compatible with the seal lip elastomer material and the right viscosity for the application. Incompatible lubrication can result in the wearing out of the oil seal.
An example of a lubricant you can use is Permatex Anti-Seize Lubricant, a highly refined blend of graphite, aluminum, and copper lubricants.
Oil seals come in various sizes, styles, and materials. Hence, it can be challenging to pick the right type for your needs. Use the factors above to guide you throughout your oil seal selection process. If youre looking for top-of-the-line oil seals, Simplex is a premier distributor of oil seals and premium industrial and engineering parts in the Philippines. Visit our shop today to get started!
In Part 1, we explained the structure, functions, and types of oil seals.
Oil Seals (Part 1): The structure, functions, and types of oil seals
Oil seals come in various shapes to fit the machines and substances to be sealed.
For this reason, when designing a machine, it is important to select the oil seal that is right for that machine.
That's where this column comes in.
We will explain the key points for selecting the oil seal that is right for your machine.
Oil seals come in a wide range of types, and they also have various sizes.
When selecting the right oil seal for your machine from among these many varied types of oil seals, the following two criteria are very important.
If these criteria are met, damage of the machine can be reduced, the time needed to replace the oil seals when performing repairs can be shortened, and the machine can be used for a longer period of time.
In this way, selecting the appropriate oil seal will lead to machine design that is economically superior!
In general, oil seals should be selected in the order of priority indicated in Table 1.
However, when you actually select the oil seal to use, the most important factors are past success history and points of improvement, so it is not necessary to follow this order to the letter.
Select your oil seal type according to Table 2.
Seal selection example
Based on the above flowcharts, the oil seal type that meets the requirements shown in Table 3 would be the type code MHSA or HMSA shown in Table 4.
Shaft surface speed
(peripheral speed)
6 m/s 5 Air-side condition DustyFor a more detailed discussion of seal types and type codes, please see the following:
The rubber material used in the oil seal should be selected based on the operational temperature and substance to be sealed.
Table 5 lists the major rubber materials along with their operational temperature ranges.
Note that it is necessary to check the compatibility with fluids.
N.B.
Extreme pressure additives are compounds added to the lubricant. They are activated by heat and chemically react against rubber, which deteriorates rubber properties. For this reason, it is necessary to check for compatibility with rubber materials.
Nitrile rubber (NBR)
Standard typeWell-balanced in terms of resistance to abrasion and high and low temperatures
-30100
With competitive price and timely delivery, CDI sincerely hope to be your supplier and partner.
Necessary to check compatibility with fluids
(See *2)
Fluids
Fuel oil
Lubricating oil
Hydraulic fluid
Grease
Chemicals
Water
110
Hydrogenated nitrile rubber (HNBR)
Standard typeCompared with nitrile rubber, superior in resistance to heat and abrasion
-30140
Acrylic rubber (ACM)
Standard type High oil resistance and good abrasion resistance -20150
High- and low-temperature-resistant type Improved low temperature resistance and same level of heat resistance as the standard type -30150
Silicone rubber (VMQ)
Standard type Wide operational temperature range and good abrasion resistance -50170
Fluoro rubber (FKM)
Standard type The most superior in resistance to heat, and good abrasion resistance -20180
Notes
*1 ASTM: American Society for Testing and Materials
*2 For more details on fluid compatibility, please see the following:
Rubber materials, operational temperature ranges and their compatibility with fluids
The metal case and spring material used in the oil seal should be selected based on the substance to be sealed.
Table 6 shows how to select the metal case and spring materials.
Substance to be sealed Material Metal case Spring
Cold rolled carbon steel sheet
(JIS* SPCC)
Stainless steel sheet
(JIS* SUS304)
High carbon steel wire
(JIS* SWB)
Notes
* JIS: Japanese Industrial Standard
: Compatible
: Incompatible
: Not applicable
Oil seals can show good sealing performance in combination with properly designed shafts and housings.
Table 7 shows the shaft design checklist.
Table 8 shows the housing design checklist.
Nominal seal width
b, mm
Nominal seal O.D.
D, mm
F
mm Over Up to 10 D - 4 10 18 D - 6 18 50 D - 8When the total eccentricity is excessive, the sealing edge of the seal lip cannot accommodate shaft motions and leakage may occur.
Total eccentricity is the sum of shaft runout and the housing-bore eccentricity.
Total eccentricity, shaft runout and housing-bore eccentricity are generally expressed in TIR (Total Indicator Reading).
The allowable total eccentricity is the maximum total eccentricity at which the sealing edge can accommodate shaft rotation and retain adequate sealing performance. The oil seal's allowable total eccentricity is affected by the design of the oil seal, the accuracy of the shaft, and the operating conditions.
For details on shaft and housing design, please see the following:
Examples of allowable total eccentricity for oil seals
Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions.
Figure 9 shows items relating to oil seal characteristics.
For a more detailed discussion of seal characteristics, please see the following:
Seal characteristics
When selecting the oil seal that is right for your machine, it is important that the oil seal be appropriate for the requirements of the usage environment and that it be easily acquired for replacement.
In this month's column, "How to select the right oil seal," we conveyed the following points:
1) Oil seal shape and material should be selected based on the housing, substance to be sealed, pressure, rotational speed, total eccentricity, and air-side conditions.
2) Oil seals can show good sealing performance in combination with properly designed shafts and housings.
3) Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions. For this reason, diligent care is required in oil seal selection.
In order for the sealing property of the oil seal you selected to really shine, attention needs to be paid to how it is handled.
In the event of seal failure, it is necessary to take effective countermeasures.
We will cover these points in the next column, "Oil Seals (Part 3)".
If you have any technical questions regarding oil seals, or opinions/thoughts on these "Bearing Trivia" pages, please feel free to contact us using the following form:
For more Automotive Oil Sealinformation, please contact us. We will provide professional answers.
Previous: None
Next: Top Mitsubishi Oil Seals: Essential for Agricultural Machinery
Comments
Please Join Us to post.
0